Quantcast
Channel: integrali definiti – Zanichelli Aula di scienze
Viewing all 47 articles
Browse latest View live

Volumi di solidi di rotazione

$
0
0

Ricevo da Lucia la seguente domanda:

 

Caro professore,

potrebbe aiutarmi con questi problemi? (pag.2059, nn. 327, 328, 333, 334, Matematica.blu 2.0)

1) Trova il volume del solido ottenuto ruotando di \(360^\circ\) attorno all’asse \(x\) il trapezoide definito dalla funzione \(y=\frac{x}{2-x}\) nell’intervallo \(\left[ 0;1 \right]\).

2) Calcola il volume del solido generato dalla rotazione completa attorno all’asse \(x\) del trapezoide individuato dal grafico della funzione \(y=\frac{1}{\cos x}\) nell’intervallo \(\left[ 0;\frac{\pi }{4} \right]\).

3) Trova il volume del solido generato dalla rotazione completa attorno all’asse \(x\) del trapezoide individuato dal grafico della funzione \(y=\sqrt{\frac{x+4}{x}}\) nell’intervallo \(\left[-5;-4 \right]\).

4) Rappresenta graficamente la funzione \(y=\sqrt{{{e}^{3x}}}\) e determina il volume del solido ottenuto mediante una rotazione completa attorno all’asse \(x\), con \(x\in \left[ 0;1 \right]\).

 

Grazie.

 

Le rispondo così:

Cara Lucia,

ciascuno dei volumi richiesti è dato da un integrale definito del tipo \(\pi \int\limits_{a}^{b}{{{\left( f\left( x \right) \right)}^{2}}dx}\): \[\text{1)  }V=\pi \int\limits_{0}^{1}{\frac{{{x}^{2}}}{{{\left( 2-x \right)}^{2}}}dx}=\pi \int\limits_{1}^{2}{\frac{{{\left( 2-t \right)}^{2}}}{{{t}^{2}}}dt}=\pi \left[ -\frac{4}{t}+t-4\ln t \right]_{1}^{2}=\pi \left( 3-4\ln 2 \right)\quad .\] \[\text{2)  }V=\pi \int\limits_{0}^{\pi /4}{\frac{1}{{{\cos }^{2}}x}dx}=\pi \left[ \tan x \right]_{0}^{\pi /4}=\pi \quad .\]\[\text{3)  }V=\pi \int\limits_{-5}^{-4}{\frac{x+4}{x}dx}=\pi \left[ x+4\ln \left| x \right|
\right]_{-5}^{-4}=\pi \left( 1-4\ln \frac{5}{4} \right)\quad .\]\[\text{4)  }V=\pi \int\limits_{0}^{1}{{{e}^{3x}}dx}=\pi \left[ \frac{{{e}^{3x}}}{3} \right]_{0}^{1}=\frac{\pi }{3}\left( {{e}^{3}}-1 \right)\quad .\]

Massimo Bergamini


Un’equazione particolare

$
0
0

Ricevo da Lucia la seguente domanda:

 

Carissimo professore,

avrei urgentemente bisogno del suo aiuto riguardo ad un esercizio che non riesco a risolvere (pag.2082, n.25, Matematica.blu 2.0).

 

Determinare il valore del parametro \(t\) che soddisfa l’equazione  \[\int\limits_{0}^{t}{\frac{{{e}^{x}}}{1+{{e}^{x}}}dx}=\int\limits_{0}^{1}{\left( 3{{x}^{2}}+2x+1 \right)dx}\quad .\]

Grazie.

 

Le rispondo così:

 

Cara Lucia,

calcoliamo gli integrali coinvolti nell’equazione e ricaviamo il valore dell’incognita \(t\): \[\left[ \ln \left( 1+{{e}^{x}} \right) \right]_{0}^{t}=\left[ {{x}^{3}}+{{x}^{2}}+x \right]_{0}^{1}\to \ln \left( 1+{{e}^{t}} \right)-\ln 2=3\to \ln \left( 1+{{e}^{t}} \right)=3+\ln 2\to \]\[\to 1+{{e}^{t}}={{e}^{3+\ln 2}}\to {{e}^{t}}=2{{e}^{3}}-1\to t=\ln \left( 2{{e}^{3}}-1 \right)\quad .\]

Massimo Bergamini

Un quadrilatero mistilineo

$
0
0

Ricevo da Elisa la seguente domanda:

 

Caro professore,

mi aiuti con questo quesito:

 

Determina l’area del quadrilatero mistilineo limitato dalla parabola \(\gamma_1\) di equazione \(y=-x^2+4x\) e dalla parabola \(\gamma_2\) di equazione \(y=-x^2+14x-40\), dalla tangente a \(\gamma_1\) nell’origine e dalla tangente a \(\gamma_2\) nel vertice.

 

Grazie.

 

Le rispondo così:

 

Cara Elisa,

con riferimento alla figura, possiamo osservare che il quadrilatero in questione corrisponde ad un trapezio rettangolo privato dei sottografici delle due parabole negli intervalli \(\left[ 0;4 \right]\) e \(\left[ 4;7 \right]\) rispettivamente. Poiché le tangenti in questione, \(y=9\) e \(y=4x\), si incontrano nel punto di coordinate \((\frac{9}{4};9)\), si ha:

\[S=\frac{423}{8}-\int\limits_{0}^{4}{\left( -{{x}^{2}}+4x \right)dx}-\int\limits_{4}^{7}{\left( -{{x}^{2}}+14x-40 \right)dx}=\]\[=\frac{423}{8}-\left[ -\frac{1}{3}{{x}^{3}}+2{{x}^{2}} \right]_{0}^{4}-\left[ -\frac{1}{3}{{x}^{3}}+7{{x}^{2}}+40x \right]_{0}^{4}=\]\[=\frac{423}{8}-\frac{32}{3}-18=\frac{581}{24}\quad .\]

Massimo Bergamini

Un problema di capacità con integrali

$
0
0

Ricevo da Maria Rita la seguente domanda:

 

Buonasera,

vorrei un chiarimento in merito al seguente esercizio (n.74, pag.24, Verso la seconda prova di matematica 2016).

 

Una vasca di gasolio In un magazzino di prodotti petroliferi il gasolio è stoccato in una vasca il cui contorno, riferito ad un sistema di riferimento cartesiano \(Oxy\), è delimitato dalle curve di equazione \(y=f(x)=-x^3+64x\) e \(y=0\), con \(x\) e \(y\) espressi in decimetri. La profondità della vasca è invece data, in ogni punto, dalla funzione \(h(x)=x^2-8x\). Calcola il peso massimo del gasolio che può essere immagazzinato, sapendo che il suo peso specifico è \(0,85\;kg/dm^3\).

 

Grazie.

 

Le rispondo così:

 

Cara Maria Rita,

si tratta di calcolare la capacità totale della vasca in decimetri cubi, utilizzando il seguente integrale (in ogni punto dell’intervallo \(0\le x\le 8\) una sezione della vasca perpendicolare al piano \(xy\) è costituita da un rettangolo di lati \(|f(x)|=-x^3+64x\) e \(|h(x)|=-x^2+8x\)): \[V=\int\limits_{0}^{8}{\left( -{{x}^{3}}+64x \right)\left( -{{x}^{2}}+8x \right)dx}=\int\limits_{0}^{8}{\left( {{x}^{5}}-8{{x}^{4}}-64{{x}^{3}}+512{{x}^{2}} \right)dx}=\]\[=\left[ \frac{1}{6}{{x}^{6}}-\frac{8}{5}{{x}^{5}}-\frac{64}{4}{{x}^{4}}+\frac{512}{3}{{x}^{3}} \right]_{0}^{8}=\frac{{{8}^{6}}}{20}=13107,2\ d{{m}^{3}}\]

da cui il peso massimo del gasolio immagazzinabile nella vasca: \[13107,2\cdot 0,85=11141,12\,kg\quad .\]

Massimo Bergamini

Solidi di rotazione

$
0
0

Ricevo da Elisa la seguente domanda:

 

Professore,

mi aiuti a risolvere questo quesito.

 

Data la parabola \(y=4-x^2\), considera la regione di piano \(S\) del primo quadrante compresa tra la parabola e gli assi coordinati. Determina il volume del solido generato dalla rotazione della regione \(S\) di un giro completo  intorno alla retta \(y=5\), e dalla rotazione della regione \(S\) di un giro completo attorno alla retta di equazione  \(x=2\).

 

Grazie.

 

Le rispondo così:

 

Cara Elisa,

nel primo caso possiamo trovare il volume \(V_1\) richiesto come differenza tra il volume del cilindro che si ottiene ruotando intorno a \(y=5\) il rettangolo \(R_1\) di dimensioni \(5\) e \(2\) in cui è inscritta \(S\) e il volume del solido che si ottiene ruotando intorno a \(y=5\) la regione \(R_1-S\): quest’ultimo è lo stesso che si otterebbe ruotando intorno all’asse \(x\) il sottografico della funzione \(y=-1-x^2\), ottenuta per traslazione di \(5\) unità in direzione \(-y\):

\[{{V}_{1}}=50\pi -\pi \int\limits_{0}^{2}{{{\left( -1-{{x}^{2}} \right)}^{2}}dx=}\]\[=50\pi -\pi \left[ \frac{1}{5}{{x}^{5}}+\frac{2}{3}{{x}^{3}}+x \right]_{0}^{2}=50\pi -\frac{206}{15}\pi =\frac{544}{15}\pi \quad .\]

Nel secondo caso, in modo analogo possiamo ricavare il volume richiesto \(V_2\) sottraendo al cilindro ottenuto per rotazione del rettangolo \(R_2\) di dimensioni \(2\) e \(4\) intorno a \(x=2\) il volume del solido che si ottiene ruotando la regione \(R_2-S\) intorno allo stesso asse, o altrimenti ruotando intorno all’asse \(y\) il sottografico della funzione inversa della restrizione all’intervallo \(\left[ -2,0 \right]\) della funzione \(y=-x^2-4x\), traslata di \(2\) unità in direzione \(-x\) di \(y=4-x^2\), cioè \(x=-2+\sqrt{4-y}\): \[{{V}_{2}}=16\pi -\pi \int\limits_{0}^{4}{{{\left( -2+\sqrt{4-y} \right)}^{2}}dy}=\]\[=16\pi -\pi \int\limits_{0}^{4}{\left( 8-y-4\sqrt{4-y} \right)dy}=\]\[=16\pi -\pi \left[ 8y-\frac{1}{2}{{y}^{2}}+\frac{8}{3}{{\left( 4-y \right)}^{\frac{3}{2}}} \right]_{0}^{4}=\frac{40}{3}\pi \quad .\]

Massimo Bergamini

Solido di rotazione

$
0
0

Ricevo da Elisa la seguente domanda:

 

Caro Professore,

ho un dubbio su questo quesito:

 

Calcola il volume del solido generato dalla rotazione completa attorno alla retta \(y=2\) della parte di piano delimitata dalla funzione \(f(x)=\frac{{{x}^{2}}+1}{x}\) e dalla retta \(y=4\).

 

Grazie.

 

Le rispondo così:

 

Cara Elisa,

per prima cosa operiamo una traslazione di \(2\) unità in direzione delle \(y\) negative, ottenendo la funzione traslata \(f(x)=\frac{{{(x-1)}^{2}}}{x}\), che incontra la retta \(y=2\) nei punti di ascissa \(x=2-\sqrt{3}\) e \(x=2+\sqrt{3}\), e quindi operiamo la rotazione rispetto all’asse delle \(x\). Il volume \(V\) del solido in questione si ottiene per sottrazione dal volume del cilindro generato dalla rotazione del rettangolo in cui è inscritta la regione:

\[V=8\sqrt{3}\pi -\pi \int\limits_{2-\sqrt{3}}^{2+\sqrt{3}}{\frac{{{\left( x-1 \right)}^{4}}}{{{x}^{2}}}}dx=\]\[=8\sqrt{3}\pi -\pi \left[ \frac{\left( x-1 \right)\left( {{x}^{3}}-5{{x}^{2}}+13x+3 \right)}{3x}-4\ln x \right]_{2-\sqrt{3}}^{2+\sqrt{3}}=\]\[=8\sqrt{3}\pi -8\sqrt{3}\pi -8\pi \ln \left( 2-\sqrt{3} \right)\approx 33,1\quad .\]

 

Massimo Bergamini

Lunghezza di una curva

$
0
0

Ricevo da Andrea la seguente domanda:

 

Buongiorno,
mi sono imbattuto in questo esercizio ma non sono riuscito a risolvere l’integrale:

 

Calcolare la lunghezza della curva \(y=5\sqrt{1-\frac{{{x}^{2}}}{25}}\) nell’intervallo \(\left[ 0;5 \right]\).

 

Grazie.

 

Gli rispondo così:

 

Caro Andrea,

posto che l’elemento d’arco \(ds\) per una curva derivabile è \(ds=\sqrt{1+y’^{2}}dx\), nel nostro caso si ha:

\[y’=-\frac{x}{\sqrt{25-{{x}^{2}}}}\to ds=\sqrt{1+\frac{{{x}^{2}}}{25-{{x}^{2}}}}\ dx=\frac{1}{\sqrt{1-{{\left( \frac{x}{5} \right)}^{2}}}\ }dx\] per cui la lunghezza dell’arco in questione è data dal seguente integrale: \[L=\int\limits_{0}^{5}{\frac{1}{\sqrt{1-{{\left( x/5 \right)}^{2}}}\ }dx}=5\int\limits_{0}^{5}{\frac{1/5}{\sqrt{1-{{\left( x/5 \right)}^{2}}}\ }dx}=5\left[ \arcsin \left( \frac{x}{5} \right) \right]_{0}^{5}=5\arcsin \left( 1 \right)=\frac{5}{2}\pi \quad .\]

Massimo Bergamini

Viewing all 47 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>